This article was last revised in 425 Days ago, some of its contents may have changed. If you have any questions, you can ask the author。

In the solar energy industry, TOPCon cell technology, as an emerging high-efficiency photovoltaic technology, is gradually emerging. This article will delve into the composition of TOPCon cells, factors affecting their conversion efficiency, advantages compared to PERC technology, and the application of SpolarPV's bifacial dual-glass modules in TOPCon technology.

 

The Composition of TOPCon Cells

 

TOPCon cells are mainly composed of a substrate, an emitter, a tunneling oxide, a passivation layer, and a contact layer. The substrate usually adopts silicon wafers, and the emitter is formed through phosphorus doping. The tunneling oxide layer is used to reduce surface recombination and reflection losses. The passivation layer is used to improve the conversion efficiency of the cell, and the contact layer is used to form a metal electrode.

 

Factors Affecting the Efficiency of TOPCon Cells

 

Factors affecting the conversion efficiency of TOPCon cells include substrate material, emitter doping concentration, thickness of the tunneling oxide layer, quality of the passivation layer, quality of the contact layer, temperature, and intensity of illumination. By optimizing these factors, the electrical performance and light absorption efficiency of the cell can be improved, while reducing surface recombination and reflection losses.

 

Advantages of TOPCon Technology Compared to PERC Technology

 

Compared with traditional PERC technology, TOPCon technology has higher conversion efficiency, better temperature stability, and anti-light decay performance. This enables TOPCon cells to more effectively convert solar energy into electrical energy, providing a more reliable energy solution for users in practical applications.

 

SpolarPV's TOPCon Bifacial Dual-glass Modules

 

SpolarPV, as a leader in the solar energy field, launched 700W TOPCon bifacial dual-glass modules. These modules adopt 210mm solar cell, with a conversion efficiency of up to 22.57%,bifacial generation, and dual-glass structure, and have high mechanical strength, which can operate stably in various environments. SpolarPV's TOPCon bifacial dual-glass modules provide users with efficient, reliable, and durable solar energy solutions.

 

Through this article, we have learned about the composition of TOPCon cells, factors affecting their efficiency, advantages compared to PERC technology, and SpolarPV's innovative achievements in this field. With the continuous development of the solar energy industry, TOPCon technology is expected to bring us a more efficient and reliable way of solar energy utilization.